Application of Machine Learning for Air Quality Analysis

Jesús Ocaña, Guillermo Miñan, Luis Chauca, Karina Espínola, Luis Leiva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The main objective of this research work is to apply Machine Learning to gas sensors, to analyze air quality and transmit the data to a server through the Internet of Things (IoT). The Arduino MEGA 2560 was used, the Ethernet shield module and four gas sensors, MQ2, MQ5, MQ7 and MQ135, were placed; Machine Learning was designed with Artificial Neural Networks (ANN) and greater effectiveness was obtained using the backpropagation training algorithm. The CRISP-DM methodology was used, which contains seven stages, first the problem was identified, in the second stage the data understanding, the third data preparation, in the fourth the Machine Learning with artificial neural networks was designed, the fifth was the modeling, the sixth is the implementation of the model and the seventh is the validation by performing the most common gas tests, resulting in the recognition of the gases in its environment, obtaining a functional system. In conclusion, it was verified and confirmed that Machine Learning with Artificial Neural Networks and the use of the Backpropagation algorithm can automatically detect gases and show the Air Quality Analysis. This research is exclusive for those interested who are beginning their investigation into the world of Machine Learning.

Idioma originalInglés
Título de la publicación alojadaInternational Conference on Applied Technologies - 5th International Conference on Applied Technologies, ICAT 2023, Revised Selected Papers
EditoresMiguel Botto-Tobar, Marcelo Zambrano Vizuete, Sergio Montes León, Pablo Torres-Carrión, Benjamin Durakovic
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas17-30
Número de páginas14
ISBN (versión impresa)9783031589553
DOI
EstadoPublicada - 2024
Evento5th International Conference on Applied Technologies, ICAT 2023 - Samborondon, Ecuador
Duración: 22 nov. 202324 nov. 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen2049 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia5th International Conference on Applied Technologies, ICAT 2023
País/TerritorioEcuador
CiudadSamborondon
Período22/11/2324/11/23

Nota bibliográfica

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Huella

Profundice en los temas de investigación de 'Application of Machine Learning for Air Quality Analysis'. En conjunto forman una huella única.

Citar esto